Long Time Asymptotics of the Parabolic Anderson Model in the Hyperbolic Space

Xi Geng University of Melbourne, Australia (Joint with Weijun Xu (Peking University) and ongoing project with Weijun Xu and Sheng Wang)

BIRS Workshop on Stochastics and Geometry Banff, September 2024

The PAM in the Euclidean Space

The parabolic Anderson model (PAM) on \mathbb{R}^d :

$$\begin{cases} \partial_t u(t,x) = \Delta u(t,x) + \xi(x) \cdot u(t,x), \\ u(0,\cdot) \equiv 1. \end{cases}$$

- Here ξ = {ξ(x) : x ∈ ℝ^d} is a mean-zero, stationary Gaussian field with sufficiently regular sample functions.
- The covariance function

$$Q(x) \triangleq \mathbb{E}[\xi(0)\xi(x)]$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

is twice continuously differentiable at the origin.

The PAM in the Euclidean Space

Feynman-Kac representation:

$$u(t,x) = \mathbb{E}_{x}\left[e^{\int_{0}^{t} \xi(W_{s})ds}\right],$$

where *W* is an BM on \mathbb{R}^d independent of ξ .

Basic questions:

- What is the exact long time growth of u(t, x) as $t \to \infty$?
- What is the fluctuation asymptotics?
- Moment vs almost sure asymptoics.

The PAM in the Euclidean Space

Define

$$\sigma^2 \triangleq \operatorname{Var}[\xi(0)], \ \chi = \frac{1}{\sqrt{2}} \operatorname{Tr} \sqrt{-\operatorname{Hess} Q(0)}.$$

Moment asymptotics (Gärtner-König, AAP 2000):

$$\langle u(t,x)^p \rangle = \exp\left(\frac{\sigma^2 p^2}{2}t^2 - \chi p^{3/2}t^{3/2}(1+o(1))\right), \quad \forall p \ge 1.$$

Almost sure asymptotics (Gärtner-König-Molchanov, PTRF 2000):

$$u(t,x) = \exp\left(\sqrt{2d\sigma^2 t}(\log t)^{1/2} - (2d/\sigma^2)^{1/4}\chi t(\log t)^{1/4}(1+o(1))\right).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

If one changes the underlying geometry, would it lead to different asymptotic behaviours of the PAM?

Some aspects of the geometry of non-negatively curved spaces are "not-so-much" different from \mathbb{R}^d :

► Volume growth, heat kernel decay, behaviour of BM etc.

We work with the geometry of negative curvature:

• The standard hyperbolic space \mathbb{H}^d .

Some related works in non-Euclidean spaces

- Compact Riemannian manifolds (Chen-Ouyang-Vickery, 2023).
- ► Trees (Hollander-König-Santos, 2020; Hollander-Wang, 2023).

- Heisenberg groups (Baudoin-Ouyang-Tindel-Wang, 2023)
- Metric measure spaces (Baudoin-Chen-Huang-Ouyang-Tindel-Wang, 2024).
- Singular case on compact Rumanian surfaces (Dahlqvist-Diehl-Driver, 2017).

The hyperbolic plane

The upper-half plane: $\mathbb{H}^2 \triangleq \{(x, y) : y > 0\}.$

Metric tensor:

$$ds^2 = \frac{dx^2 + dy^2}{y^2}$$

 Complete, simply-connected Riemannian manifold of curvature -1.

Geodesics:

Semi-circles with both ends perpendicular to the *x*-axis.

Hyperbolic distance:

$$d(z_1, z_2) = 2 \operatorname{arcsinh} \frac{|z_1 - z_2|_{eu}}{2\sqrt{y_1 y_2}}, \quad z_i = (x_i, y_i).$$

The hyperbolic space

Hyperbolic Laplacian:

$$\Delta = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right).$$

Volume form:

$$\operatorname{vol} = \frac{dxdy}{y^2}.$$

Group of orientation-preserving isometries:

$$\mathrm{PSL}_2(\mathbb{R}) = \mathrm{SL}_2(\mathbb{R})/\{\pm I\},\$$

where

$$SL_2(\mathbb{R}) = \{A \in Mat_2(\mathbb{R}) : det A = 1\}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

acts on \mathbb{H}^2 via Möbius transform.

Some global properties

Exponential volume growth:

$$\operatorname{vol}(B_R) = 2\pi \left(\cosh R - 1\right) \propto e^R.$$

Bottom spectrum of Laplacian:

$$\inf \operatorname{Spec}(-\Delta) = \frac{1}{4}.$$

Exponential decay of heat kernel (Davies-Mandouvalos, 1998):

$$p(t, x, y) \approx \frac{1}{t} \exp\left(-\frac{1}{4}t - \frac{d(x, y)^2}{4t} - \frac{1}{2}d(x, y)\right) \frac{1 + d(x, y)}{\sqrt{1 + d(x, y) + t}}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへぐ

Long time behaviour of BM

The *hyperbolic Brownian motion* W_t : Markov process generated by Δ .

Transience:

$$\frac{d(o, W_t)}{t} \to 1 \text{ a.s. } (d(o, W_t) \to \infty).$$

Central limit theorem (Babillot, 1994):

$$\frac{d(o, W_t) - t}{\sqrt{2t}} \xrightarrow{d} N(0, 1).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Sullivan's theorem

With probability one, W_t converges to a definite (random) point on the boundary at infinity as $t \to \infty$.

- The angular component of W_t converges a.s.
- On the Poincaré disk, W_t converges a.s. to a point on S^1 .
- Bounded, non-constant harmonic functions:

$$\mathbb{H}^2 \ni x \mapsto \mathbb{E}_x[\varphi(W_\infty)], \quad \varphi \in \mathcal{C}(S^1).$$

PAM in the hyperbolic space

Let $M = \mathbb{H}^d$ (*d*-dimensional, complete, simply-connected R-manifold with curvature -1).

Consider the PAM on *M*:

$$\begin{cases} \partial_t u(t,x) = \Delta u(t,x) + \xi(x) \cdot u(t,x), \\ u(0,\cdot) \equiv 1. \end{cases}$$

Gaussian field ξ :

 Mean-zero, invariant under isometries, sufficiently regular covariance function.

Feynman-Kac:

$$u(t,x) = \mathbb{E}_x \left[e^{\int_0^t \xi(W_s) ds} \right],$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where W is the hyperbolic BM starting from x.

Examples of Gaussian field

Let Ξ be the white noise on the isometry group *G* w.r.t. the Haar measure dg.

► { $\Xi(A)$: $A \in \mathcal{B}(G)$, $|A|_G < \infty$ } is a Gaussian family with mean-zero and covariance structure

$$\mathbb{E}[\Xi(A)\Xi(B)] = |A \cap B|_G.$$

Let $f: M \to \mathbb{R}$ be a smooth function with suitable decay at infinity.

Define

$$\xi(x) \triangleq \int_G f(g^{-1} \cdot x) \Xi(dg), \quad x \in M.$$

Covariance function:

$$Q(x, y) = \int_G f(g \cdot x) f(g \cdot y) dg = Q(d(x, y)).$$

Moment asymptotics

Define

$$H(t) \triangleq \frac{1}{2}\sigma^2 t^2, \ \beta(t) \triangleq t^{3/2}. \ (\sigma^2 \triangleq \operatorname{Var}[\xi(x)])$$

Theorem (Xu-G., 2024+)

For any $p \ge 1$, one has

$$\lim_{t \to \infty} \frac{1}{\beta(pt)} \log \left(e^{-H(pt)} \langle u(t,x)^p \rangle \right) = -\chi_{\text{eu}} = -\sqrt{\frac{Q^{\prime\prime}(0)}{2}} dx$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The fluctuation exponent χ_{eu}

Fix a base point $o \in M$.

• Geodesic polar coordinates: $x = (\rho, \sigma) \in M$.

$$\blacktriangleright \ \rho = d(x, o) \in [0, \infty).$$

• $\sigma \in ST_oM$: angular component of x w.t.r. o.

Define the functional $J : \mathcal{P}_c(M) \to \mathbb{R}$ by

$$J(\mu) \triangleq -\frac{1}{4}Q''(0) \int_{M \times M} d_{\rm eu}(z_1, z_2)^2 \mu(dz_1) \mu(dz_2),$$

where

$$d_{\mathrm{eu}}(z_1, z_2) \triangleq \rho_1^2 + \rho_2^2 - 2\rho_1 \rho_2 \langle \sigma_1, \sigma_2 \rangle_{T_o M}, \quad z_i = (\rho_i, \sigma_i).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The fluctuation exponent χ_{eu}

Define the Donsker-Varadhan functional:

$$\mathcal{S}_{eu}(\nu) = \begin{cases} \int_{T_o M} |\nabla \phi|^2 dx, & \nu \ll dx, \frac{d\nu}{dx} = \phi^2 \text{ with } \phi \in H^1(T_o M); \\ +\infty, & \text{otherwise.} \end{cases}$$

This is essentially the Dirichlet form associated with the Euclidean BM (BM on T_oM).

The fluctuation asymptotics:

$$\lim_{t \to \infty} \frac{1}{\beta(pt)} \log \left(e^{-H(pt)} \langle u(t,x)^p \rangle \right)$$

= $-\inf \left\{ J(\mu) + S_{eu}(\exp_o^{-1}\mu) : \mu \in \mathcal{P}_c(M) \right\}$
=: $-\chi_{eu} = -d\sqrt{Q''(0)/2}$ (Gärtner-König, 2000)

Almost sure asymptotics

Theorem (Wang-Xu-G., 2024+)

Suppose additionally that the covariance function is compactly supported. There exist deterministic constants C, c > 0 such that with probability one,

$$\overline{\lim_{t\to\infty}}\frac{1}{t^{5/3}}\log u(t,o) \leq C, \ \lim_{t\to\infty}\frac{1}{t^{5/3}}\log u(t,o) \geq c.$$

Euclidean case:

$$u(t,o) = e^{\sqrt{2d\sigma^2} \cdot t \sqrt{\log t} (1+o(1))}$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Almost sure asymptotics

Growth of sample functions for the Gaussian field ξ :

$$\overline{\lim_{R \to \infty}} \frac{\max_{x \in B(o,R)} \xi(x)}{\sqrt{2\sigma^2(d-1)R}} = 1 \text{ a.s.}$$

- The hyperbolic BM $d(o, W_t) \approx (d-1)t + O(\sqrt{t})$.
- On the ball of radius O(t),

$$\max \xi \approx O(\sqrt{t}).$$

Feynman-Kac $u(t, o) = \mathbb{E}_o[e^{\int_0^t \xi(W_s) ds}]$:

$$u(t,o) \lesssim e^{O(t^{3/2})}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This intuition is NOT true!

In working progress

Trying to understand which of the following two scenarios is correct:

1. No exact limit:

$$\overline{\lim_{t\to\infty}}\frac{1}{t^{5/3}}\log u(t,o)\neq \underline{\lim_{t\to\infty}}\frac{1}{t^{5/3}}\log u(t,o).$$

2. Exact first order asymptotics:

$$\lim_{t\to\infty}\frac{1}{t^{5/3}}\log u(t,o)=C.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Fluctuation asymptotics (we believe: in the scale $t^{4/3}$)?

Idea of proof: moment asymptotics

Main philosophy of Gärtner-König:

• Rescaling argument + Feynman-Kac \implies

$$e^{-H(t)}u(t,o) = \mathbb{E}_o\left[e^{\int_0^{\beta(t)}\xi_t(W_s^t)ds}\right],$$

- $\blacktriangleright \ \beta(t) = t^{3/2}.$
- ξ_t : suitably rescaled version of ξ .
- W^t is a hyperbolic BM starting at o.
- Both $\xi_t(\cdot)$ and W_{\cdot}^t are considered defined under curvature $\kappa_t \equiv t^{-1/2}$.

Idea of proof: moment asymptotics

After taking expectation w.r.t. ξ :

$$e^{-H(t)}\langle u(t,o)\rangle = \mathbb{E}_o\left[e^{-\beta(t)J_t(L^t_{\beta(t)})}\right].$$

Here

$$\begin{split} L_s^t(dx) &\triangleq \frac{1}{s} \int_0^s \mathbf{1}_{\{W_r^t \in dx\}} dr, \quad s > 0; \\ J_t(\mu) &\triangleq -\frac{1}{\beta(t)} \log \langle e^{\beta(t)(\mu, \xi_t)} \rangle, \quad \mu \in \mathcal{P}_c(M). \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Key points:

Idea of proof: moment asymptotics

Varadhan's lemma \implies

$$\lim_{t\to\infty}\frac{1}{\beta(t)}\log\left(e^{-H(t)}\langle u(t,o)\rangle\right) = -\inf_{\mu\in\mathcal{P}_c(M)}\left\{J(\mu) + \mathcal{S}_{\mathrm{eu}}(\mu)\right\} = -\chi_{\mathrm{eu}}.$$

Main difficulty:

- One cannot directly prove such an LDP on the non-compact manifold *M*.
- Curvature ($\kappa_t \equiv t^{-1/2}$) is changing simultaneously as the time scale of BM ($\beta(t) = t^{3/2}$) goes to infinity.

Idea of proof: Almost sure asymptotics

Why is the effective localisation range is of radius $K(t) = O(t^{4/3})$?

Maximum of ξ on B(o, K(t)) is

$$h_{K(t)} \triangleq \sqrt{2\sigma^2(d-1)K(t)} \; (+o(h_{K(t)})).$$

Localisation:

Before exiting B(o, K(t)), it takes δ(t) amount of time to a peak "island" I of ξ and stays there over [δ(t), t].

Idea of proof: Almost sure asymptotics

$$\begin{split} u(t,o) \geq \mathbb{E}_o \left[e^{\int_0^{\delta(t)} \xi(W_s) ds} \cdot e^{\int_{\delta(t)}^t \xi(W_s) ds} \\ &; W_{\delta(t)} \in I, W|_{[\delta(t),t]} \subseteq I, W|_{[0,t]} \subseteq B(o, K(t)) \right] \\ \geq e^{-C\delta(t)\sqrt{K(t)}} \cdot e^{(t-\delta(t))h_{K(t)}} \cdot e^{-\frac{K(t)^2}{4\delta(t)}}. \end{split}$$

Choose K(t) as large as possible under the constraint:

$$(t-\delta(t))h_{K(t)} > \frac{K(t)^2}{4\delta(t)} + C\delta(t)\sqrt{K(t)}.$$

This leads us to choose $\delta(t) \propto t$ and $K(t) = O(t^{4/3})$, resulting in

$$u(t,o) \ge e^{ct^{5/3} + o(t^{5/3})}.$$

The End

Thank you for your attention!

